Indian discoms and the lure of solar-based irrigation

Anas Rahman

IWMI-SDC-GIZ Webinar
01 February 2021
CEEW – Among Asia’s leading policy research institutions

Energy Access
Renewables
Power Sector
Industrial Sustainability & Competitiveness
Low-Carbon Pathways
Risks & Adaptation
Technology, Finance & Trade
CEEW Centre for Energy Finance
Context

• Agriculture in power sector
 – 22% of total electricity consumption
 – 3% of consumer revenue
 – Deficit is covered by
 • Cross-subsidising
 • Power subsidy

• ₹1 lakh crores – total power subsidy in last year

• Power supply issues with agriculture
 – Limited & untimely supply
 – Poor quality of supply
 – Huge backlog of connection applications

• Demand-side reforms haven’t materialised
 – Operational and political constraints in metering and billing
 – Political constraints in increasing tariff
The promise of solar: a supply-side solution

• Benefits:
 – Substitute the perpetual power subsidy with a one-time capital subsidy
 – Assured full day-time quality power for the farmer
 – Auxiliary benefits
 • Increase renewables in energy mix (RPO obligations)
 • Emission savings

• Three main models of solarisation
 – On-grid – individual solarized pump
 – Solarized agricultural feeders
 – Off-grid solar pumps
Solarisation of Agriculture

Individual grid-connected solar pumps
Overview

• The model
 – Existing grid-connected pumps are solarised
 – State to provide capital subsidy for solarisation
 – Pumps to run exclusively or predominantly on solar power
 – Sell surplus power back to the grid

• Benefits
 – Avoided subsidy bill for the state
 – Additional income for the farmer
 – Discom gets power at a very low rate
Discoms’ experiences

- **Pilots**
 - Karnataka: ‘Surya Raita Scheme’
 - Solarised existing pumps with unidirectional metering
 - A farmer cooperative was formed to facilitate the project
 - Feed-in-Tariff: ₹7.2; ₹6 to payback loans; ₹1 to farmer; ₹0.2 to cooperative
 - Andhra Pradesh: ‘Grid-connected BLDC pumps’
 - Replaced existing pumps with Solar DC pumps
 - A farmer cooperative was formed to facilitate the project
 - Feed-in-Tariff: ₹1.5
 - Gujarat: ‘Suryashakti Kisan Yojana’
 - Bidirectional metering
 - Feed-in-Tariff: ₹3.5

- The experiences of these pilots revealed several operational/commercial/technical challenges to the model
Challenges

• **Commercial**
 – **Financing beneficiary contribution:** The political economy of free power - farmers are reluctant to make any substantial upfront investment.
 • In Karnataka, farmer contribution was fixed at 15% of total cost. But farmers refused to pay. Upfront contribution had to be converted to discom sponsored loans.
 • In Andhra Pradesh pilot, they experimented with no beneficiary contribution, but low Feed-in-Tariff (₹1.5). The annual income from sale of electricity was not more than ₹6000
 • In Gujarat, beneficiary contribution was 5% and FiT ₹3.5. The state government provided an additional subsidy for 7 years to pay off the loans.
 – **Cost of infrastructure upgrade:**
 • Expensive feeder segregation cost for many states
 • Ensuring daytime ‘must-run’ status – upgrades in the tail end
Challenges

• **Operational**
 – **Tackling the free-rider problem:** Perverse incentive for non-participating farmers in the same feeder
 • In Karnataka, there were unauthorized connections which continued after the solarisation.
 • Gujarat introduced ‘Smart Energy Metering’ with IoT devices at farmgate and transformer level. Penalties to the whole feeder if the difference is too high
 • Andhra Pradesh waited till all farmers in the feeder agreed to participate
 – **Metering and billing:** Discom faces man-power shortage. Farmer has trust issues with remote billing
 • Andhra Pradesh – Billing in presence of farmer, discom representative and farmer cooperative representative. Not a scalable model
 • Karnataka – Billing to be done with the help of the cooperative. But the cooperative have become dysfunctional.
Overall assessment

- Does the model lead to overall savings for the state?
 - Only theoretical assessments
 - Andhra Pradesh has estimated a net savings of ₹1.3 lakh-₹2.1 lakh for a 5HP system
 - In Rajasthan, a study by World Bank has estimated that a one-time capital investment of ₹10,700 crores can substitute an annual subsidy outgo of ₹6,200 crores
- Does the model lead to savings for farmer?
 - Impact assessment
 - Andhra Pradesh has estimated an annual income of ₹6000 to farmers
 - Theoretical assessment
 - CEEW estimates that a 5 HP system with 1.5 times panel oversizing and ₹3 FiT can give up to ₹24000 income annually (before paying EMI for loan)
 - In Rajasthan, the World Bank study estimated an annual return of ₹19,000 during loan period and ₹54,000 during remaining period for a 7.5HP system
Overall assessment

• **Does the model incentivise irrigation efficiency?**
 – Beneficiaries have two options with the surplus power
 • In Karnataka, farmers resorted to selling water to neighbours as the income during loan repayment period were meagre.
 • In Andhra Pradesh, the income wasn’t attractive enough for energy conservation
 – States will have to discover the right financing approach to make it work

• **How do states view the opportunity?**
 – Generally states are reluctant to adopt this model
 • Andhra Pradesh and Karnataka are not interested in scaling up the model.
 • From discom’s point of view, the feeder solarisation model give same benefits, but without all the operational difficulties.
 – Gujarat and Rajasthan are investing in the model. Gujarat solved many challenges using technology. They have announced a scale up of SKY. But it has been delayed significantly
Solarisation of Agriculture

Feeder solarisation
Overview

• **The model**
 – Whole feeder is to be powered by a decentralised solar power plant
 – In case of shortfall in power generated, it is compensated from the grid.

• **Benefits**
 – Reduced cost of supply for the discom
 – Reduction in transmission losses
 – Improved quality of power supply for the farmer

• **Pilots**
 – Maharashtra: ‘Mukhyamantri Saur Krishi Vahini Yojana’
 – Karnataka: ‘Solar Farmer Scheme’
Challenges

• Operational
 – Land issue:
 • In Maharashtra, land prices were too high for decentralised solar plants to be competitive. Out of 7000MW put for tender, only 1800MW received bid and about 500MW commissioned
 • Land diversion: In Karnataka, diversion of agriculture land for solar plant were causing administrative delays in project approval

• Commercial
 – Competitive tariff:
 • Due to many logistical overheads, the tariff for decentralized solar plants are higher than the large scale plants. In Maharashtra, a tariff of ₹3.3 did not elicit good response, while the tariff of large scale solar plant is less than ₹3
Overall assessment

- Potential savings from the difference between current cost of supply and solar power tariff (typically between ₹1.5-2.5 per unit)
- There are less operational and commercial challenges in the implementation
Hence, many discoms are interested in this model

- However,
 - The model in itself does not incentivise electricity and water conservation by the farmers
 - Need for convergence with water saving scheme. E.g.: ‘Pani Bachao Paisa Kamao’ Punjab
 - For sustainable deployment of model, it should be integrated to discom’s long term planning
 - E.g.: Chhattisgarh
Solarisation of Agriculture

Solar off-grid pumps
Overview

• **Target**
 – Avoid new subsidised connections
 – Applicants in the queue
 – Farmers using diesel pumps
 – Locations where grid won’t reach currently
 – Replace existing electric connections – E.g. Rajasthan

• **Benefits**
 – Improving access to irrigation
 – Avoided grid extension cost
 – Avoided

• **Experience so far**
 – 2 lakh off-grid pumps under different state schemes
 – 20 lakh off-grid pumps targeted under PM-KUSUM
Challenges

- **Commercial**
 - Financing beneficiary contribution: Unaffordable for most farmers
 - Even a 10% upfront contribution is 6-8 times the average monthly income of small and marginal farmers
 - Loan-based models haven’t taken off
 - Access to credit
 - Lack of financial instruments
 - Technical capacity of banks to assess the investment
 - High subsidy cost for the state
 - So far, only subsidy heavy models. More than 75% in most states

- **Operational**
 - Targeting
 - Rajasthan – Over 80% beneficiaries have existing electric connections

- **Regulatory**
 - Groundwater withdrawal
 - Zero marginal cost of water extraction - excess withdrawal
Thank you

ceew.in | @CEEWIndia