Understanding electricity in the context of solar irrigation

Dr. Rahul Tongia** Senior Fellow, CSEP

 \bowtie

rahul.tongia@csep.org

Adjunct Professor, Carnegie Mellon Senior Fellow (non-resident), Brookings Institution Founding Advisor, India Smart Grid Forum

** Special thanks to Tabish Parray and Nikhil Tyagi, CSEP, for data compilation

February 1, 2021

There are multiple transitions (transformations) underway

- It's NOT just about "decarbonization"
- Move away from *liquid* fossil fuels in transportation
 - EVs
 - Gas (?interim)
 - Hydrogen (?green hydrogen)
- Grid of the future
 - More decentralized
 - Digital
- Changing role and power of consumers
 - Flexible
 - Prosumers
- Rise of Markets

BUT THE TIME CONSTANTS VARY, by country and by application

Realities of electricity

- Most important form of energy for India and many LDCs
 - Low heating demand
 - Limited personal transportation use thus far
- India: Coal dominates supply by far
 - Even with no new coal plants**, in 2030 half of electricity is still coal
- The AC grid is an enormous *coupled* system
 - Real-time balancing: Supply = Demand + Losses
- History: economies of scale \rightarrow centralization
- India's older problem of raw deficit is over
 - Older solution to all problems was "more supply"
 - Need is kW (capacity) at the right time, not kWh (energy) per se

Reality is a complex intersection

- We tend to think in terms of quantity vs. price
 - Are prices = ~cost?
- The system used to be costs-plus regulated
 - Now growing use of "markets"
- But social welfare redistribution remains key part of regulations
 - Different consumers are viewed differently
 - There are also supply-side distortions
 - Externalities of fossil fuels
 - Support for RE

Segment-wise Billing, Cost & Volume

Source: PFC data

Independence | Integrity | Impac

Progress

DISCOM Wise Agriculture ABR (FY-19)

Source : Compiled from SERC Tariff Orders (FY19)

Realities of agriculture power pricing

- The prices shown are as per REGULATOR
 - Farmers may pay less thanks to subsidies by the state(s) often free
 - Subsidies after tariffs are not captured or easily compiled (PFC data only show the billing)
 - Avg. Cost of Supply (ACos): 7.55 Rs./kWh
 - Total ABR without subsidy: 4.98 Rs./kWh
 - Total ABR with subsidies: 6.13 Rs./kWh (PFC Data); ~6.18 per tariff order compilations
- Bad equilibrium
 - Utilities lose money for each kWh "sold"
 - Farmers have little incentive to be efficient
 - Utilities inflate agricultural consumption as it's mostly unmetered
 - Hide other losses
 - Get revenues from states

FY 2014-15 Agriculture Electricity Consumption

	India	Pakistan	Nepal	Bangladesh
Share of usage	18.78%	9.72%	2.81%	4.13%
Actual Agric (GWh)	168,913	5,985	81.41	1,636
Total Consumption (GWh)	899,232	62,846	3,873	39,624

Category-wise % Shares in Electricity Consumption in various Countries -2016

Source: - International Energy Agency (IEA) except India

Source: - International Energy Agency (IEA) except

Independence | Integrity | Impact

The promise of solar agricultural use

- No battery required (unlike supply-side solar general options)
 - Agric. demand can be shifted
- Old C.W. off peak is middle of the night
 - If we apply concept of "net demand", off-peak will soon be mid-day
- But the long term value of RE? As RE rises
 - Marginal value declines
 - Marginal cost of integration rises

Giving solarized water doesn't change this much (only shows up as negative demand)

Time of Day matters: Last week India hit record demand...in the AM thus far

Centre for Scotlar and Progress

3 different models of Solarizing agriculture

- Where do you put the solar?
 - Anywhere, via feeder control Karnataka model
 - Feeder level Maharashtra model
 - At the edge (earlier) Rajasthan model
- The other key differences boil down to who owns it, in/out energy at what terms, and thus who benefits?
 - Feed in tariffs are very contentious
 - "self use" is insufficient to price and size

Issues and Hurdles

- The solar has to be grid interactive
 - Not just if its insufficient but also for when it's surplus
 - How do you right size it?
- Is this a conflation of wholesale vs. retail?
 - We are changing an ongoing subsidy into a one-time capex subsidy
- Will all farmers benefit, or only the elite?
 - Minority of farmers are the ones who enjoy free/cheap power
- Crop choice distortions are already there

Closing Thoughts

- India's grid is in changing and must in a few years (ignore COVID)
 - Temporary surplus of coal capacity (~doubled FY11-16)
 - High RE targets initial target can be absorbed without much storage
- Is it fair to compare solar *procurement* vs. *retail* prices? (ignore pricing distortions)
- Need to improve signalling
 - Time of Day pricing
 - Wires and infra costs (Fixed vs. Variable)
 - Price to recognize edge-based disruption
 - "Paying customers" are the ones who will "leave the grid"
 - Open Access
 - RE
 - (soon) Storage, peer-to-peer

"The Future is already here – it's just not evenly distributed"

- William Gibson

