# Increasing SIP Utilization for Market Viability

Evidence from ICIMOD installed SIPs in Nepal Tarai

> Dipendra Bhattarai Ram Fishman Nabina Lamichhane Aditi Mukherji Dan Oziel

- For SIPs to become economically viable, one needs returns on the investment to pay off:
- If C is the upfront cost and S is the governmental subsidy level, and if B is the revenue generated by the SIP, we need to achieve:

$$(C-S) < \sum_{t} \frac{B_t}{(1+r)^t}$$

• If this conditions is achieved, then with the required finance (another big challenge), the SIP becomes market viable.

- Once the SIP has been installed, the marginal cost of operating it is basically null.
- To achieve the greatest possible benefits, the pump should be operated whenever solar radiation is available to power it.
- Utilisation below this level will results in sub-optimal revenue streams, making profitability harder to achieve.

## We followed a sample of 53 SIP owners using daily monitoring data on usage, by crop (hours and CM).

| District                   | N  | Monitoring period | SPIP installation |
|----------------------------|----|-------------------|-------------------|
| Saptari                    | 23 | 6/2017 - 12/2019  | 4/2017            |
| Rautahat, Bara and Sarlahi | 30 | 6/2018 - 12/2019  | 4/2018            |

| Crop       | N  | crop size area (ha) |
|------------|----|---------------------|
| Wheat      | 23 | 0.35                |
| Paddy      | 42 | 0.55                |
| Vegetables | 32 | 0.24                |
| Pulses     | 10 | 0.18                |

The average user operated the SIP on only 40% of the days.



#### Saptari



#### Rautahat Bara Sarlahi



#### Hours of use per hectar (In thousands)



#### Flow Meter volum per hectar (In thousands)



Watering days per hectar



Gap days



- What can go wrong?
  - There is no value to be derived from additional water.
  - Why?
    - Water from other sources is sufficient (precipitation).

 Land is fully irrigated with crops with the highest returns to water.

- What can go wrong?
  - There is no value to be derived from additional water.
  - Why?
    - Water from other sources is sufficient (precipitation).
      - Store water.
    - Land is fully irrigated with crops with the highest returns to water.
      - Hard to imagine.
      - Sell to neighbouring farmers.

### Conclusion

- Farmers utilise the SIP very partially
- Land is not fully irrigated, certainly not with high value crops.
- Very little water selling (only 7 farmers).
- Could water market and crop market frictions hamper SIP profitability?
- Need for more work.

